United States Edition
Slutsåld
This workbook offers ten investigative cases. Each case study requires students to synthesize information from multiple chapters of the text and apply that knowledge to a real-world scenario as they pose hypotheses, gather NEW! information, analyz...
Das weltweit erfolgreichste Biologie-Lehrbuch in der Kurzfassung - perfekt abgestimmt auf den Lehrplanstoff für die gymnasiale Oberstufe!
Jane B. Reece As Neil Campbell's longtime collaborator, Jane Reece has participated in every edition of BIOLOGY. Earlier, Jane taught biology at Middlesex County College and Queensborough Community College. Her research as a doctoral student and postdoc focused on genetic recombination in bacteria. Besides her work on BIOLOGY, she has been a coauthor on Biology: Concepts & Connections, Essential Biology, and The World of the Cell. Lisa A. Urry Lisa Urry (Units 1-3) is a professor and developmental biologist, and recent Chair of the Biology Department, at Mills College. After graduating from Tufts University with a double major in Biology and French, Lisa completed her Ph.D. in molecular and developmental biology at MIT. She has published a number of research papers, most of them focused on gene expression during embryonic and larval development in sea urchins. Lisa is also deeply committed to promoting opportunities for women in science education and research. Michael L. Cain Michael Cain (Units 4 and 5) is an ecologist and evolutionary biologist who is now writing full time. Michael earned a joint degree in Biology and Math at Bowdoin College, an M.Sc. from Brown University, and a Ph.D. in Ecology and Evolutionary Biology from Cornell University. As a faculty member at New Mexico State University and Rose-Hulman Institute of Technology, he taught a wide range of courses including introductory biology, ecology, evolution, botany, and conservation biology. . Michael is the author of dozens of scientific papers on topics that include foraging behavior in insects and plants, long-distance seed dispersal, and speciation in crickets. In addition to his work on Campbell BIOLOGY, Michael is also the lead author of an ecology textbook. Steven A. Wasserman Steve Wasserman (Unit 7) is a professor at the University of California, San Diego (UCSD). He earned his A.B. in Biology from Harvard University and his Ph.D. in Biological Sciences from MIT. Through his research on regulatory pathway mechanisms in the fruit fly Drosophila, Steve has contributed to the fields of developmental biology, reproduction, and immunity. As a faculty member at the University of Texas Southwestern Medical Center and UCSD, he has taught genetics, development, and physiology to undergraduate, graduate, and medical students. He has also served as the research mentor for more than a dozen doctoral students and more than 50 aspiring scientists at the undergraduate and high school levels. Steve has been the recipient of distinguished scholar awards from both the Markey Charitable Trust and the David and Lucille Packard Foundation. In 2007, he received UCSD's Distinguished Teaching Award for undergraduate teaching. Peter V. Minorsky Peter Minorsky (Unit 6) is a professor at Mercy College in New York, where he teaches evolution, ecology, botany, and introductory biology. He received his B.A. in Biology from Vassar College and his Ph.D. in Plant Physiology from Cornell University. He is also the science writer for the journal Plant Physiology. After a postdoctoral fellowship at the University of Wisconsin at Madison, Peter taught at Kenyon College, Union College, Western Connecticut State University, and Vassar College. He is an electrophysiologist who studies plant responses to stress. Peter received the 2008 Award for Teaching Excellence at Mercy College. Robert B. Jackson Rob Jackson (Unit 8) is a professor of biology and Nicholas Chair of Environmental Sciences at Duke University. Rob holds a B.S. in Chemical Engineering from Rice University, as well as M.S. degrees in Ecology and Statistics and a Ph.D. in Ecology from Utah State University. Rob directed Duke's Program in Ecology for many years and just finished a term as the Vice President of Science for the Ecological Society of America. Rob has received numerous awards, including a Presidential Early Career Award in Science and Engineering from the National Science Foundation. He
1. Introduction: Themes in the Study of Life
I. THE CHEMISTRY OF LIFE
2. The Chemical Context of Life
3. Water and Life
4. Carbon and the Molecular Diversity of Life
5. The Structure and Function of Large Biological Molecules
II. THE CELL
6. A Tour of the Cell
7. Membrane Structure and Function
8. An Introduction to Metabolism
9. Cellular Respiration and Fermentation
10. Photosynthesis
11. Cell Communication
12. The Cell Cycle
III. GENETICS
13. Meiosis and Sexual Life Cycles
14. Mendel and the Gene Idea
15. The Chromosomal Basis of Inheritance
16. The Molecular Basis of Inheritance
17. From Gene to Protein
18. Regulation of Gene Expression
19. Viruses
20. Biotechnology
21. Genomes and Their Evolution
IV. MECHANISMS OF EVOLUTION
22. Descent with Modification: A Darwinian View of Life
23. The Evolution of Populations
24. The Origin of Species
25. The History of Life on Earth
V. THE EVOLUTIONARY HISTORY OF BIOLOGICAL DIVERSITY
26. Phylogeny and the Tree of Life
27. Bacteria and Archaea
28. Protists
29. Plant Diversity I: How Plants Colonized Land
30. Plant Diversity II: The Evolution of Seed Plants
31. Fungi
32. An Overview of Animal Diversity
33. An Introduction to Invertebrates
34. The Origin and Evolution of Vertebrates
VI. PLANT FORM AND FUNCTION
35. Plant Structure, Growth, and Development
36. Resource Acquisition and Transport in Vascular Plants
37. Soil and Plant Nutrition
38. Angiosperm Reproduction and Biotechnology
39. Plant Responses to Internal and External Signals
VII. ANIMAL FORM AND FUNCTION
40. Basic Principles of Animal Form and Function
41. Animal Nutrition
42. Circulation and Gas Exchange
43. The Immune System
44. Osmoregulation and Excretion
45. Hormones and the Endocrine System
46. Animal Reproduction
47. Animal Development
48. Neurons, Synapses, and Signaling
49. Nervous Systems
50. Sensory and Motor Mechanisms
51. Animal Behavior
VIII. ECOLOGY
52. An Introduction to Ecology and the Biosphere
53. Population Ecology
54. Community Ecology
55. Ecosystems and Restoration Ecology
56. Conservation Biology and Global Change